Читать онлайн учебники
на ANSEVIK.RU

>>> Перейти на мобильную версию сайта >>>

Учебник для 11 класса

Химия

       

§ 24. Химия и производство

Химическая промышленность и химическая технология

Многие химические реакции, с которыми вы познакомились в лабораторных условиях, или аналогичные им осуществляют в промышленных условиях при производстве важнейшей для повседневной жизни химической продукции.

Пластмассы, синтетические волокна, фармацевтические препараты, удобрения, мыла и моющие средства, красители, пестициды, косметика и парфюмерные изделия и даже компоненты пищи — все это только некоторые виды продукции, выпуск которой полностью или частично зависит от химической промышленности.

Одиннадцать первых мест по объему производства принадлежит веществам, формулы которых: H2SO4, NH3, N2, СаО, O2, С2Н4, NaOH, Cl2, НСl, H3PO4, HNO3. Эти-то вещества и используют в больших количествах далее для получения столь необходимых видов продукции, как названные выше.

Даже если речь идет о «100%-м природном продукте», это означает лишь то, что в нем нет синтетических добавок, и совсем не означает, что при получении не использовались какие-либо химические технологии.

Химическая промышленность — это отрасль народного хозяйства, производящая продукцию на основе химической переработки сырья.

Основой ее является химическая технология — наука о наиболее экономичных методах и средствах массовой химической переработки природных материалов (сырья) в продукты потребления и промежуточные продукты, применяемые в различных отраслях народного хозяйства.

Главная задача химии и химической технологии — производство разнообразных веществ и материалов с определенным комплексом механических, физических, химических и биологических свойств.

Любое химическое производство создается на основе общих научных принципов (табл. 21).

Таблица 21
Научные принципы организации
химических производств

Общие принципы

Частные принципы

1. Создание оптимальных условий проведения химических реакций

Противоток веществ, прямоток веществ, увеличение площади поверхности соприкосновения реагирующих веществ, использование катализатора, повышение давления, повышение концентраций реагирующих веществ

2. Полное и комплексное использование сырья

Циркуляция, создание смежных производств (по переработке отходов)

3. Использование теплоты химических реакций

Теплообмен, утилизация теплоты реакций

4. Принцип непрерывности

Механизация и автоматизация производства

5. Защита окружающей среды и человека

Автоматизация вредных производств, герметизация аппаратов, утилизация отходов, нейтрализация выбросов в атмосферу

Несмотря на огромное многообразие химических производств веществ и материалов, все они включают составляющие, указанные на схеме 13.

Схема 13
Важнейшие составляющие химического производства

Сырье

Сырьем называют природные материалы (природные ресурсы), используемые в промышленности для получения различных продуктов и еще не прошедшие промышленной переработки. Иногда используют вторичное сырье — это изделия, отслужившие свой срок, или отходы каких-либо производств, которые экономически выгодно снова переработать в химические продукты.

Сырье химической промышленности классифицируют по различным признакам.

По составу сырье делят на минеральное и органическое (растительное и животное).

По агрегатному состоянию различают твердое (руды, горные породы, твердое топливо), жидкое (нефть, рассолы) и газообразное (природный и попутный газы, воздух) сырье.

К минеральному сырью относят руды (из них получают металлы) и нерудные ископаемые: сера, фосфориты, калийные соли, поваренная соль, песок, глины, слюда (из них получают неметаллы, удобрения, соду, щелочи, кислоты, керамику, цемент, стекло и другие продукты).

К органическому сырью относится ископаемое горючее: торф, уголь, нефть, природный и попутный нефтяной газы — это ценное энергетическое сырье и сырье для химических синтезов. К органическому сырью также относится сырье растительного и животного происхождения, его дают сельское, лесное и рыбное хозяйство. В основном оно идет для производства продуктов питания, но частично, к сожалению, является и техническим сырьем. Кроме природных веществ, на химических заводах применяют полупродукты и отходы предприятий, а также вспомогательные материалы: воду, топливо, окислители, растворители, катализаторы (схема 14).

Схема 14
Классификация химического сырья

В связи с бурным развитием промышленности растет и объем потребления полезных ресурсов. Это приводит к тому, что многие сырьевые источники быстро истощаются, поэтому необходимо решать проблему бережного и рационального использования сырья.

Вода

Особое место среди природных ресурсов занимает вода. Она играет важную роль в химической промышленности.

В ряде производств это сырье и реагент, непосредственно участвующий в основных химических реакциях, например при получении водорода, серной, азотной и фосфорной кислот, щелочей; в реакциях гидратации и гидролиза.

Будучи универсальным растворителем и одним из наиболее распространенных катализаторов, вода дает возможность осуществлять многие химические реакции с большой скоростью в растворах или в присутствии ее следов. В химической, металлургической, пищевой и легкой промышленности воду используют как растворитель твердых, жидких, газообразных веществ. Часто ее применяют для перекристаллизации, для очистки различных продуктов производства от примесей.

Вода используется как теплоноситель из-за ее большой теплоемкости, доступности и безопасности в применении. Ею охлаждают реагирующие массы, нагретые в результате экзотермических реакций. Водяным паром или горячей водой подогревают взаимодействующие вещества для ускорения реакций или проведения эндотермических процессов.

Современные химические комбинаты расходуют миллионы кубических метров воды в сутки. Например, для получения 1 т аммиака требуется 1500 м3 воды. Поэтому химические предприятия, нефтехимические заводы строят рядом с водными источниками.

Задачу сокращения расхода воды химическими предприятиями решают в трех основных направлениях: широкое применение оборотного водоснабжения (вода, используемая в теплообменных аппаратах, охлаждается и снова поступает в теплообменные аппараты, и так повторяется многократно), замена водяного охлаждения воздушным, очистка сточных вод и их повторное использование.

Энергия

Вы знаете, что большинство химических процессов требует затраты энергии. В химическом производстве энергию также расходуют на проведение вспомогательных операций: транспортировку сырья и готовой продукции, сжатие газов, дробление твердых веществ, контрольно-измерительное обслуживание и др. Химическая промышленность относится к одной из самых энергоемких. Средний расход только электрической энергии на производство 1 т аммиачной селитры NH4NO3 равен 11 000 кВт•ч; 1т синтетического аммиака — 3200; 1 т фосфора — 16 500; 1 т алюминия — 19 000.

В химической промышленности используют различные виды энергии: электрическую, тепловую, ядерную, химическую и световую.

Электрическую энергию используют для проведения электролиза расплавов и растворов веществ, нагревания, в операциях, связанных с электростатическими явлениями, например, в электрофильтрах при производстве серной кислоты для очистки оксида серы (IV). Электроэнергию вырабатывают тепловые (ТЭС), атомные (АЭС) электростанции и гидроэлектростанции (ГЭС).

Тепловая энергия в химической промышленности необходима для нагревания реагирующих веществ при проведении химических реакций, а также для сушки, плавления, дистилляции, выпаривания и других операций. Ее источником в производстве цемента, стекла, керамики служат различные виды топлива (твердого, жидкого, газообразного). Большинство же химических предприятий используют тепловую энергию в виде пара, горячей воды, получаемых из котельных установок или ТЭЦ.

Ядерную энергию используют главным образом для получения электроэнергии. Но такие реакции, как полимеризация, синтезы фенола и анилина, отверждение полимеров, проводят с помощью радиоактивного излучения.

Химическая энергия выделяется в виде теплоты в результате экзотермических реакций. Ее используют для предварительного подогрева исходных веществ, получения горячей воды, водяного пара. Химическая энергия может превращаться в электрическую, например, в аккумуляторах. А есть такие производства, в которых за счет энергии химических реакций покрывают собственные потребности, а излишки отпускают другим потребителям.

При получении 1 т серной кислоты из серы выделяется 5 МДж теплоты, а общие затраты на ее производство составляют всего 0,36 МДж. Излишки поступают к другим потребителям в виде пара и электроэнергии.

Световую энергию (ультрафиолетовое, инфракрасное, лазерное излучение) используют при синтезе хлороводорода, галогенировании органических веществ, реакциях изомеризации.

Ученые разрабатывают способы использования солнечной энергии, например фотохимическое разложение воды.

Защита окружающей среды и охрана труда

С точки зрения защитников окружающей среды, у химической промышленности плохая репутация. С чем это связано? Попробуем разобраться.

Все отрасли химической промышленности выпускают полезную продукцию. Вы можете сомневаться в необходимости тех или иных продуктов, но экономически они полезны и нужны, иначе бы их не производили.

Например, кому-то может быть неясно, зачем существует производство хлора, зато все согласны с необходимостью строительства завода по выпуску труб из поливинилхлорида.

Некоторые виды химической продукции действительно не вызывают особой симпатии: взрывчатые вещества для мин и снарядов, отравляющие вещества-пестициды, т. е. препараты для борьбы с сорняками, вредителями, возбудителями болезней.

С одной стороны, производство пестицидов возрастает, так как необходимо производить все больше продуктов питания для непрерывно увеличивающегося населения Земли. Но с другой стороны, некоторые пестициды весьма устойчивы в окружающей среде и представляют реальную опасность для существующих экосистем: гибнут полезные насекомые, птицы, рыбы, звери, происходит отравление людей непосредственно пестицидами или продуктами, в которых они накопились.

Любое промышленное предприятие (и химическое, конечно) имеет отходы. Производство без отходов невозможно. Газы выбрасывают в атмосферу, жидкие отходы — в канализацию, а иногда и в реку, твердые и некоторые жидкие сжигают в специальных печах или захоранивают в специально оборудованных местах.

Эти вещества загрязняют окружающую среду, неблагоприятно влияют на здоровье людей.

Поэтому химические предприятия потенциально опасны, их не строят непосредственно в городах. На самих предприятиях существуют жесткие требования охраны труда, что делает работу на них иногда даже безопаснее, чем на строительстве.

Например, установлены безопасные для здоровья людей предельно допустимые концентрации (ПДК) вредных веществ в воздухе производственных помещений и на территории предприятий, а также в атмосфере населенных мест; предусмотрены строгие меры для предотвращения пожаров и быстрой ликвидации возможных возгораний; на некоторых производствах работники имеют индивидуальные средства защиты от вредных веществ. Выполнение правил охраны труда контролируют органы государственной инспекции, а также внутризаводская служба.

Наилучшим способом решения проблемы снижения вредности производства для людей и охраны окружающей среды служит применение безотходных или малоотходных технологий. Пример — синтез аммиака, в котором отходы (непрореагировавшие газы) многократно возвращают в производство.

В других случаях остро стоит вопрос об очистке отходов. К современным ее методам относят фильтрацию, пыле-, газоулавливание, обезвреживание (нейтрализация, поглощение газов жидкими и твердыми поглотителями), биологическую очистку (при помощи микроорганизмов), осаждение в специальных отстойниках, химические методы (перевод веществ в малорастворимые и нерастворимые соединения) и другие способы.

Очистные сооружения, конечно, требуют определенных материальных затрат, а некоторые руководители предприятий стараются избавиться от отходов самыми дешевыми способами. Такой подход, очевидно, объясняется невниманием к проблемам охраны окружающей среды от загрязнения, а может быть, связан с некомпетентностью в этом вопросе.

Характерная черта химической промышленности — сравнительно небольшое количество работающих. Это обусловлено высокой степенью механизации и автоматизации производств, что также способствует охране труда работников.

Производство аммиака и метанола

Любое химическое производство состоит из отдельных взаимосвязанных процессов-стадий (схема 15).

Схема 15
Основные стадии химического производства

Сравним два химических производства: синтез аммиака и синтез метанола. Оба процесса очень похожи по условиям их проведения и источникам сырья. Их осуществляют на аналогичных установках (рис. 50), которые часто монтируют на одном предприятии.

Рис. 50.
Схема установки, которую можно использовать в производстве аммиака и метанола

Все аппараты этих производств максимально герметичны, используется только энергия экзотермических реакций. Благодаря циклической (замкнутой) схеме синтеза эти производства служат примерами малоотходных, почти не имеющих выбросов в окружающую среду. Затраты на производство существенно снижены за счет осуществления непрерывного процесса: исходные вещества постоянно поступают в реактор, а продукты постоянно из него выводятся. Непрерывность процесса позволяет его полностью автоматизировать.

Производства аммиака и метанола считаются наиболее передовыми с точки зрения химической технологии (табл. 22).

Таблица 22
Производство аммиака и метанола

Основные стадии производства

I. Подготовка сырья. Подвод реагирующих веществ в зону реакции с помощью турбокомпрессора и циркуляционного компрессора

1) Оба производства используют в качестве сырья природный газ метан

  • аммиак

    Реагирующие вещества: азот N2 и водород Н2. Источник азота — воздух, источник водорода — природный газ (метан СН4). Исходную смесь газов берут в соотношении 1 объем N2 к 3 объемам Н2

  • метанол

    Реагирующие вещества: оксид углерода (II) СО и водород Н2 (их смесь называется синтез-газом). Синтез-газ получают конверсией метана водяным паром при высокой температуре:

    Для синтеза метанола исходную смесь берут в соотношении 1 объем СО к 5 объемам Н2

2) реагирующие газы тщательно очищают, затем подают в турбокомпрессор, где сжимают до

  • аммиак - 25—60 МПа,
  • метанол - 25—30 МПа,

а затем смешивают с циркуляционным газом (о нем смотрите далее) и направляют в колонну синтеза

II. Химический процесс проходит в основном аппарате производства — колонне синтеза

Колонны синтеза бывают разной конструкции, мы рассматриваем колонну, совмещающую в одном корпусе катализаторную коробку и теплообменник. Внутреннее устройство колонны синтеза можно увидеть на схеме установки. В таких колоннах можно осуществлять и синтез аммиака, и синтез метанола (рис. 50). Рассмотрим характеристику реакций, лежащих в основе получения целевых продуктов, — обратимые, экзотермические, гомогенные идут с уменьшением объема

  • аммиак -

  • метанол -

Подбор оптимальных условий проведения этих синтезов осуществляют исходя из характеристики химических реакций:

1) реакции обратимые, гомогенные (исходные вещества и продукты — газы) и идут с уменьшением объема, следовательно, смещению равновесия в сторону продуктов способствует повышенное давление;

  • метанол - 2) смещению равновесия вправо способствует также увеличение концентрации водорода в исходной смеси по сравнению со стехиометрическим;

3) реакции экзотермические, повышение температуры смещает химическое равновесие в сторону исходных веществ, а понижение температуры — в сторону продуктов реакции, но при этом скорость синтеза будет очень мала. Поэтому реакции проводят при оптимальных для данных процессов температурах:

  • аммиак - 450—500 °С
  • метанол - 370—400 °С Уменьшение давления и увеличение температуры способствуют увеличению доли побочных продуктов

Исходную смесь газов сначала нагревают в теплообменнике за счет выходящих газов, движущихся противотоком, а затем в зоне экзотермической реакции. Противоток — движение различных веществ навстречу друг другу с целью создания наилучших условий для обмена энергией (в данном случае);

4) для ускорения синтеза, быстрейшего установления равновесия используют катализатор:

  • аммиак - восстановленное железо Fe (с примесью оксидов калия и алюминия)
  • метанол - «цинк-хромовый» 8ZnO•Сr2O3•СrO3, имеющий селективное действие (от лат. selectio — выбор); он ускоряет целевую реакцию, уменьшая долю побочных продуктов

В обоих процессах реагенты и продукты реакции находятся в газовой фазе и образуют гомогенную систему. Реакции протекают на поверхности твердых катализаторов. Такие реакции составляют особый класс — гетерогенно-каталитических реакций.

Важное значение имеет площадь поверхности катализатора. Катализатор изготавливают в виде губчатых гранул или таблеток.

Так как активность катализатора сильно снижается от присутствия примесей, то реагирующие газы подвергают тщательной очистке (от воды, соединений серы и др.);

5) при всех указанных условиях проведения реакций равновесный выход продукта составляет не более 20%. Поэтому синтез продукта осуществляют по способу многократной циркуляции, т. е. непрореагировавшую смесь газов многократно возвращают в производство после отделения от нее полученного продукта

III. Отвод продуктов и непрореагировавших веществ из зоны реакции производят через холодильник с последующим разделением в сепараторе

Газовая смесь, состоящая из непрореагировавших веществ и продукта

  • аммиак - N2, Н2 и NH3,
  • метанол - СО, Н2 и СН3ОН,

после контакта с катализатором предварительно охлаждается в теплообменнике, отдавая теплоту входящим газам, а затем поступает в холодильник. Охлаждение производят водой, которая движется противотоком. Глубокое охлаждение приводит к конденсации продукта реакции, а в сепараторе он отделяется от непрореагировавших газов (циркуляционных), которые циркуляционный компрессор возвращает в колонну синтеза. Многократная циркуляция газов позволяет повысить выход продукта до 85—90% от теоретического.

Аммиак в дальнейшем используют для получения азотной кислоты, которая идет на производство удобрений, лекарств, красителей, пластмасс, искусственных волокон, взрывчатых веществ. Большие количества аммиака расходуются на получение мочевины, являющейся прекрасным азотным удобрением, да и сам жидкий аммиак и его водный раствор — это жидкие удобрения. На легком сжижении и последующем испарении с поглощением теплоты основано его применение в холодильных установках.

Метанол используют для получения большого количества разных органических веществ, в частности формальдегида

и метилметакрилата

которые используют в производстве фенолформальдегидных смол и полиметилметакрилата (органического стекла) соответственно. Помимо этого, метанол используют как растворитель, экстрагент, а в ряде стран — в качестве моторного топлива, так как добавка его к бензину повышает октановое число топлива и снижает количество вредных веществ в выхлопных газах.

Вопросы и задания к § 24

  1. Что составляет предмет химической технологии?
  2. Как классифицируют химическое сырье?
  3. Назовите основные направления решения проблемы бережного и рационального использования химического сырья.
  4. Сформулируйте энергетические проблемы химических производств. Каким видам энергии, по вашему мнению, нужно отдать предпочтение?
  5. Сформулируйте основные научные принципы химических производств.
  6. Что понимают под принципом «выбор оптимальных условий проведения процесса»? Рассмотрите его на примере производств аммиака и метанола.

Рейтинг@Mail.ru